
Natural killer cells in infection and inflammation of the lung

Introduction: natural killer cells in the lung

Natural killer (NK) cells are innate lymphocytes which are

a first line of defence against infection and cancer.1,2 NK

cells form synapses with diseased cells, but also other leu-

cocytes, including macrophages and dendritic cells, in

which they integrate activating and inhibitory signals from

a multitude of germline-encoded receptors.3–7 Activating

receptors include the natural cytotoxicity receptors

(NCRs), such as NKp46 and NKp44, the Fc receptor CD16

and NKG2D.7 The ligands for NK cell-activating receptors

include both host and pathogen glycoproteins; for exam-

ple, NKG2D recognizes the stressed-induced ligand MHC

class I polypeptide-related sequence A (MICA).8,9 Inhibi-

tory receptors, such as killer immunoglobulin-like recep-

tors (KIRs) and the NKG2A:CD94 dimer, generally

recognize classical and non-classical class I major histo-

compatibility complex (MHC) molecules, and NK cell

activation can also be triggered by loss of inhibitory

ligands from the cell surface.10,11 In addition, NK cells are

activated by cytokines, including type I interferons, inter-

leukin (IL)-12 and IL-18.12–14 Once activated, NK cells can

direct cytolytic granules towards the synapse to directly kill

a target cell.1,15 Our understanding of NK cells is evolving

rapidly and their functions clearly go beyond those of

innate killer cells. Importantly, NK cells are a potent and

early source of cytokines, particularly interferon (IFN)-c,

but they can also produce T helper type 2 (Th2)-associated

cytokines, such as IL-5 and IL-13, and the regulatory cyto-

kine IL-10.16 NK cells also specialize their function at dif-

ferent tissue locations: recently, a novel IL-22-secreting

subset of NK cells has been described in the gut and ton-

sils.17–19 The interrelationships and functions of different

NK cell subsets are not fully understood, but in humans,

NK cells expressing high levels of CD56, the predominant

subset in lymph nodes, exhibit higher cytokine production

but diminished cytotoxicity relative to CD56 dim cells,

which are the major subset in the periphery.20 NK cells can

be activated by interactions with dendritic cells and macro-

phages and profoundly influence the generation of the

adaptive response.1,2,21–23 The existence of memory in NK

cells, that is long-term alteration of NK cell responses

according to previous experience, has also been recently

described.24–26

Here, I review the contribution of NK cells to respira-

tory infections and inflammatory disorders of the lung.

The airways are a major route of entry of many impor-

tant pathogens into the body and the ability of NK cells

to respond rapidly to infection suggests an important role

for these cells in acute pulmonary infection. However,

evidence is emerging that NK cells are also important in

regulating chronic infection and inflammation, and thus
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Summary

The lungs are a major site of entry of pathogens into the body and thus

require rapid and effective innate responses to prevent pathogens estab-

lishing infection and to limit their spread. Additionally, the immune

response in the lung must be tightly regulated such that pathogens are

cleared, but immunopathology and chronic inflammation are prevented.

In this review, I consider the role of natural killer (NK) cells in pulmo-

nary infection and inflammation, specifically their contributions to influ-

enza, tuberculosis, asthma and chronic obstructive pulmonary disease

(COPD), which are major causes of morbidity and mortality world-wide.

Despite evidence of the importance of NK cells in these diseases, there are

still major gaps in our understanding of how their function is regulated

in this unique tissue environment. Understanding how different beneficial

and detrimental effector functions of NK cells are triggered will be crucial

if NK cells are to be exploited therapeutically in respiratory disease.
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may play important roles in chronic infections, such as

tuberculosis, and chronic inflammatory disorders of the

airways, such as asthma.

NK cells make up 10% of resident lymphocytes in the

lung, in numbers second only to those in the spleen,27–29

and their survival may be promoted by bronchial epithe-

lial cells which spontaneously produce IL-15.30 Within

days of infection, or hours after inflammatory stimula-

tion, large numbers of NK cells are recruited to the lung

from the blood and become activated to secrete cytokines,

particularly IFN-c.28,31–35 The airways are a unique envi-

ronment in which the immune response must function.

In homeostasis, the upper airways must tolerate continu-

ous exposure to environmental antigens and commensal

organisms. During infection, innate responses in the lung

must be induced rapidly, but inflammation must be bal-

anced to avoid damage to airway structures and airway

occlusion, leading to impaired gaseous exchange. Inflam-

mation in the lung is restrained, chiefly by IL-10 and

transforming growth factor (TGF)-b produced by alveolar

macrophages, which raise the threshold of activation

which needs to be overcome before immune responses

can occur.36 In homeostasis, pulmonary NK cells from

bronchoalveolar lavage (BAL) or from lung tissue are

suppressed; they can form conjugates with target cells,

but are profoundly impaired in their cytotoxic capac-

ity.29,37,38 Lung NK cells regain their activity after 24 hr

in culture or stimulation with type I IFN, and, conversely,

peripheral blood NK cells can be suppressed by culture

with BAL fluid or alveolar macrophages, an effect unique

to this type of macrophage.38–41 Soluble factors present in

the lung that can regulate NK cell activity include TGF-b,42

prostaglandins produced by alveolar macrophages28,43 and

pulmonary surfactant.44 Human leucocyte antigen (HLA)-

G has also been reported to be expressed on pulmonary

macrophages and dendritic cells during lung cancer; how-

ever, the role of HLA-G in regulating pulmonary NK cells

during inflammation is unknown.45 The importance of

regulation of NK cells in the lung is illustrated by the

fatal lung pathology caused when NK cells are systemi-

cally activated by exogenous IL-18 and IL-2.46 Thus

the extent of NK cell activation in the lung will depend

on the balance of pro-inflammatory and regulatory

factors.

Genetic deficiencies that effect NK cell function are

rare, but have important implications for pulmonary

health. In transporters associated with antigen proces-

sing-2 (TAP2)-deficient patients, class I MHC expression

is defective and NK cells are poorly regulated. Early in

life, NK cells are believed to protect patients against

infection in the absence of effective T-cell immunity;

however, later in life chronically activated NK cells are

recruited to the skin and respiratory tract via chemokine

(C-C motif) receptor 2 (CCR2), where they form lethal

granulomatous lesions.47–49 Furthermore, genetic defi-

ciencies that result in loss of NK cell function are

associated with recurrent viral and bacterial infections,

including those of the upper and lower respiratory

tract.50–55 Next, I discuss our current state of knowledge

of the role of NK cells in the acute respiratory viral

infection influenza and the chronic bacterial infection

tuberculosis. I also discuss the role of NK cells in the

inflammatory disorders asthma, chronic obstructive pul-

monary disease (COPD) and other cases of fibrosing

airway disease.

NK cells in influenza infection

There is an urgent need for a better understanding of the

immune response to influenza, with the goals of reducing

pathology during infection and enhancing protection by

vaccination.56 The adaptive immune response, particularly

that involving cytotoxic T cells and antibody, can protect

against influenza.57,58 The cytotoxic lymphocyte response

must be sufficiently rigorous to aid clearance of the virus,

as illustrated by cases of severe influenza infection in

infants characterized by a deficiency of NK and cytotoxic

T lymphocytes in the lung,59,60 but dysregulation of the

innate response results in a ‘cytokine storm’ and corre-

lates with severity of symptoms.61–65

NK cells are recruited to the lung within the first few

days of influenza infection in humans and in murine

models28,66 and depletion of lung NK cells leads to

increased morbidity and mortality, within days of infec-

tion.35,67,68 NK cells reciprocally regulate the adaptive

response in influenza: NK cells are required for activation

of the cytotoxic T lymphocyte (CTL) response69 and

T-cell IL-2 production augments NK cell IFN-c produc-

tion in recall responses.70

NKp46 is a key activating receptor which is critical for

protecting mice against lethal influenza infection,71 and is

one of the few known examples of direct binding of viral

glycoprotein to an NK cell-activating receptor. Influenza

haemagglutinin (HA) binds to both NKp46 and NKp44,

largely via the a-2,6-linked terminal sialic acid, which is

present on residue Thr225 of NKp46.72–74 The ability of

NK cells to be activated by different influenza strains is

influenced by levels of HA expression, HA affinity for sia-

lic acid and HA glycosylation.73,75,76 However, it is not

clear how the specificity of this interaction is conferred,

that is, why other related receptors such as NKp30, which

are likely to be similarly glycosylated, do not exhibit the

same interaction with HA. NK cells are activated by influ-

enza-infected monocytes and dendritic cells, via both con-

tact-dependent mechanisms and cytokines.77 Enhanced

cytotoxicity of NK cells is stimulated by IFN-a secretion;

CD69 up-regulation is induced by IFN-a, NKG2D recog-

nition of the ligands UL16-binding protein (ULBP)1–3,

and NKp46 ligation of HA, and IFN-c secretion is stimu-

lated by IL-12, NKG2D and NKp46.79
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To counter recognition by NK cells, influenza causes

reorganization of MHC I into aggregates within GM1

ganglioside (GM-1) rich lipid microdomains, which

increases binding of the inhibitory receptors KIR2DL1

and LIR, increasing inhibition of NK cell function.80,81

Responses of NK cells to influenza-infected monocytes

were dependent on the KIR/HLA compound genotype,

providing evidence that KIR/HLA-C interactions have a

significant role in cytotoxicity and represent a mechanism

by which these genotypes may influence influenza and

other viral infections.82

Antibodies to influenza matrix protein 2 (M2), which

is expressed on the surface of infected cells, required NK

cells to confer protection in vivo, suggesting that, once an

antibody response to influenza has developed, antibody-

dependent cell-mediated cellular cytotoxicity (ADCC) is

mediated by NK cells and contributes to viral clearance.83

NK cells express tumour necrosis factor-related apoptosis-

inducing ligand (TRAIL) early in influenza infection, but

blockade of TRAIL unexpectedly decreased viral titre at

this time-point.84 The role of IL-18 in influenza infection

is controversial. One group reported that, in the absence

of IL-18, NK cell activity and IFN-c production were

reduced and early viral replication was poorly con-

trolled,85 whereas others reported decreased viral load,

with no difference in pathology or NK cell IFN-c produc-

tion in the same IL-18-deficient mice.86

In conclusion, during influenza infection, NK cells are

recruited to the lung where they could potentially interact

with virally infected epithelial cells, monocytes, dendritic

cells and T cells (Fig. 1). They contribute to protection

against influenza, limiting early viral replication and pro-

moting an effective CTL response. Yet, the mechanisms

involved in achieving this, for example the relative impor-

tance of NK cell cytokine production versus cytotoxicity,

over the time–course of influenza infection are unclear.

NK cells in tuberculosis

One third of the world’s population are currently infected

with Mycobacterium tuberculosis (MTb), and this infection

results in almost 2 million deaths annually.87 In the

majority of people, the infection remains in a chronic

latent state, in which the immune response prevents bac-

terial dissemination, but is not so vigorous as to cause

immunopathology. Mycobacteria survive within macro-

phages, which can kill the bacteria if sufficiently activated,

so induction of a Th1-type response, and in particular

IFN-c production, is key to protection against infec-

tion.88,89 The importance of the innate response in disease

is still unclear.90

NK cell NKp46 expression and cytotoxicity are reduced

in freshly isolated peripheral blood mononuclear cells

(PBMCs) from tuberculosis patients, which may be attrib-

utable to suppression by monocytes and IL-10.91–93 NK

cells in the pleural effusion, the excess fluid that collects

around the lungs of patients with tuberculosis, are

enriched for CD56hi cells with reduced expression of

CD16 and perforin, which may be attributable to selective

apoptosis of CD56dim cells induced by as yet unidentified

soluble factors in pleural fluid.94 In accordance with the

CD56hi subset of NK cells being associated with high

cytokine production, NK cells from pleural effusions

spontaneously produced IFN-c and responded strongly to

re-exposure to MTb by producing IFN-c, and this IFN-c
production correlated with disease severity.94 Thus, in

active disease, NK cells exhibit reduced cytotoxicity but

increased IFN-c production, perhaps because of selective

activation of NK cell subsets.

Human NK cells can be activated by and induce apop-

tosis in mycobacteria-infected monocytes and macrophages

in vitro,95,96 mediated by NKp46 recognition of vimentin

and NKG2D recognition of its ligand ULBP-1.93,97,98 NK

cells can also be activated by direct binding of NKp44 to

the mycobacterial cell wall, although the ligand remains

undetermined.99,100 MICA is the gene most strongly asso-

ciated with susceptibility to the opportunistic Mycobacte-

rium avium and is expressed in the epithelium,

macrophages, epitheloid cells and multinucleated giant

cells in infected tissues, suggesting a potential role for this

NKG2D ligand in mycobacterial infection.101 As well as

direct killing of infected cells, NK cells may also regulate

the T-cell response to MTb. In mixed PBMC cultures

stimulated with MTb, NK cell IFN-c production and

CD40:CD40L interactions with infected monocytes stimu-

lated IL-15 and IL-18 production by monocytes and pro-

moted expansion and cytotoxicity of CD8+ cells.102 In

similar mixed cultures, NK cells lysed activated regulatory

T cells (Tregs) via NKp46 and NKG2D:ULBP1 inter-

actions.103 Thus, overall, many cell types express ligands

that could activate NK cells in the lung during myco-

bacterial infection (Fig. 1).

Are NK cells important in MTb infection in vivo? Ani-

mal models do not give a clear answer to this question.

NK cells are activated and produce IFN-c in the lung fol-

lowing mycobacterial infection.104–107 In T-cell-deficient

mice, a protective role for IL-12-induced IFN-c produc-

tion by NK cells has been demonstrated.108 However,

depletion of NK cells had no effect on bacterial replica-

tion in the lung of immunocompetent mice,104 suggesting

that NK cells may be redundant in the presence of intact

adaptive immunity. In fact, surprisingly, IFN-c knockout

(KO) mice, which are impaired in their ability to clear

mycobacteria, cleared them as effectively as wild-type

mice when NK cells were depleted, suggesting that NK

cells can inhibit protective immunity.105 It should be

borne in mind that murine models may poorly reflect the

situation in humans; for example, although lymphocyte

aggregates form in the lung, the classical granuloma does

not.109
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To reconcile the data and understand the importance

of NK cells in MTb infection it may be necessary to

differentiate their contributions at different stages of dis-

ease. Recently, it was shown that during chronic infection

with Leishmania donovani, another pathogen that inhabits

macrophages, NK cells are recruited to liver granulomas

where they produce IL-10, which suppresses cell-mediated

immunity.16 Such a mechanism may explain the apparent

suppressive role of NK cells observed in the murine

model of mycobacterial infection.105 Thus, to fully under-

stand the role of NK cells in tuberculosis, it may be nec-

essary to define their roles in limiting early infection,

inducing protective adaptive immunity and maintaining

latency, and during re-activation of infection.90

Other murine models of pulmonary infection

The contribution of NK cells to a number of other pul-

monary infections has been studied in murine models

(Table 1). The requirement for NK cells in respiratory

infection and inflammation can be demonstrated by

depletion, but cases where this is the only evidence for

NK cell involvement in infection must be interpreted with

caution, as the commonly used markers for depletion,

NK1�1 and asialo-GM1, are also expressed on other lym-

phocyte subsets.

NK cells in asthma

300 million people world-wide suffer from asthma, which

in the majority of cases is associated with allergy to envi-

ronmental antigens.110 Acute attacks caused by allergen

exposure trigger mast cell degranulation, eosinophilic

inflammation, mucus production and bronchoconstric-

tion. In the long term, airway remodelling, characterized

by airway thickening caused by extracellular matrix depo-

sition, and muscle and goblet cell hypertrophy, results in

diminished airway function.111 Inflammation and patho-

logy in asthma are driven by the production of Th2 cyto-

kines (IL-4, IL-5, IL-13, IL-9 and IL-3), which have

pleiotropic effects on leucocytes and airway stromal cells.

NK activity is enhanced in PBMCs from asthmatics.112–114

Immediately after allergen challenge, this activity declines,

consistent with extravasation of NK cells to the lung.112

This is also observed in an animal model of allergic airway

sensitization,32 and could result from the release of chemo-

attractants by activated mast cells.115 In contrast, an

increased frequency of NK cells was reported in PBMCs

from asthmatic children during acute exacerbations, which

resolved when children were in a stable condition.116 How-

ever, whether these exacerbations were caused by viral

infection was not determined. The phenotype of NK cells is

also altered in asthma and allergy. Atopic asthmatics were

reported to have a slightly higher frequency of IL-4+ and a

lower frequency of IFN-c+ NK cells following ex vivo

activation of PBMCs,117,118 and purified peripheral NK

cells of patients with atopic dermatitis spontaneously

released high amounts of IFN-c, IL-4, IL-5 and IL-13.119

Thus NK cells may contribute to the balance of Th1 and

Th2 cytokines in asthma and allergy.

The mechanisms by which NK cells are stimulated to

produce different cytokines are poorly understood.

Human and mouse NK cells produce IL-5 and IL-13 (and

in some cases IL-4) when activated ex vivo, and produc-

tion of these cytokines is selectively promoted by IL-4,

and inhibited by IL-12 or IL-10.120–129 In freshly isolated
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Figure 1. Potential activating and inhibitory interactions of natural killer (NK) cells in the lung. NK cell function in the lung is regulated by both

contact-dependent interactions and soluble mediators. Note that, although many of these interactions have been demonstrated in vitro, their tim-

ing, location and relative importance in vivo are not known. HA, haemagglutinin; IFN, interferon; IL, interleukin; KIR, killer immunoglobulin-

like receptor; MICA, MHC class I polypeptide-related sequence A; MHC, major histocompatibility complex; TGF, transforming growth factor;

ULBP, UL16-binding protein.
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peripheral blood NK cells, IL-13 is predominantly pro-

duced by the CD56hi subset.120 It has been proposed that

cytokine production correlates with NK cell maturation,

as culture of immature NK cells with IL-12 results in an

irreversible change from IL-5 to IFN-c production.130–134

So, the phenotype of NK cells in asthma and allergy could

be a result of exposure to a Th2 cytokine environment. In

support of this hypothesis, there is evidence that, in the

lung, the cytokine profile of NK cells can be influenced

by the nature of the T-cell response. In a murine model

of respiratory syncytial virus (RSV) infection, the propor-

tion of NK cells secreting IFN-c was augmented during a

Th1 response, but reduced in a Th2 response.135 This

may be a result of the direct actions of Th1-produced

IFN-c on the NK cell phenotype in vivo.126 However,

T cells are not required for activation of IL-13-producing

NK cells126,136 and IL-4 can stimulate IFN-c-producing

NK cells,137 suggesting that polarization of NK cells does

not simply echo the T-cell cytokine milieu. Other factors

that could influence the NK cell phenotype in the lung in

asthma include Prostaglandin D2 (PGD2), which is pro-

duced predominantly by mast cells138 and can potently

Table 1. The role of natural killer (NK) cells in murine models of pulmonary infection

Pathogen

Protective

effect of NK cells?

Possible protective

functions of NK cells

Proposed mechanism

of NK cell activation Notes References

Fungi

Cryptococcus

neoformans

Yes – promote clearance IFN-c production IL-18 NK cells are a major

source of IFN-c in

IL-12)/) mice

176

Aspergillus fumigatus Yes – promote survival

and clearance of pathogen

IFN-c enhances macrophage

fungicidal activity and

induces chemokine

production in the lung

Opportunistic.

NK cell IFN-c
is sufficient to

mediate clearance

33,177

Bacteria

Bordetella pertussis Yes – promote

bacterial clearance

IFN-c activates macrophages

and suppresses Th2 response

Production of IL-12

by activated DCs

178

Streptococcus

pneumoniae

No – detrimental effect

on clearance of bacteria

Major source of IFN-c Pneumolysin

activated monocytes

Experiments

performed in

scid)/) mice

179

Francisella tularensis Yes – promote survival Early source of

IFN-c promotes

clearance of bacteria

and Th1 responses

180

Legionella pneumophila Yes – mediate

pathogen clearance

Early source of IFN-c NK cell activation is

dependent on

MyD88 in NK cells

181

Haemophilus influenzae Yes – required for

pathogen killing

Stimulate killing

of intracellular

bacteria by PMNs

Activation requires IL-15

production by

Gr-1hi PMNs

182

Pseudomonas

aeruginosa

Yes – critical for

bacterial clearance

IFN-c production NKG2D Opportunistic 173,183

Staphylococcus aureus Yes IFN-c and TNF production,

augmentation

of phagocytosis

by macrophages

Activation by infected

macrophages and

bacterial superantigen

Opportunistic 184–186

Viruses

Herpes simplex

virus (HSV)

Yes – mediate

viral clearance

IFN-c secretion

and cytotoxicity

NK cell activation is

IL-18, but not

IL-12, dependent

HSV can cause

pneumonia in

neonates and

immune-compromised

patients

187,188

Respiratory syncytial

virus (RSV)

Yes – viral clearance Early IFN-c secretion Recruitment to the

lung depends on

macrophages

135,150,189,190

DC, dendritic cell; IFN, interferon; IL, interleukin; PMN, polymorphonuclear cell; scid, severe combined immunodeficiency; Th, T helper; TNF,

tumour necrosis factor.
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inhibit NK cell IFN-c production and cytotoxicity.139

Asthmatics are also deficient in type I IFN production,

which could impact on NK cell activation, particularly

during viral exacerbations of asthma.13,140,141

The differential activation of NK cells in asthma may

have important functional consequences because of their

ability to influence the adaptive response. NK cells acti-

vated with IL-12 can kill immature dendritic cells and it

has been proposed that, through ‘dendritic cell editing’

during an immune response, they remove dendritic cells

which would otherwise promote Th2 responses or toler-

ance.21 NK cells activated with IL-4 do not perform this

function, and may therefore promote T-cell anergy or

Th2 responses.142 Supporting this hypothesis, in patients

with rhinitis and asthma, the proportion of CD56hi NK

cells was low, and IFN-c production and dendritic cell

maturation, following co-culture with NK cells, were

impaired.143 There may be other consequences of the

altered NK cell response in asthma. NK cells from asth-

matics also expressed more CD95 (Fas) and affected

T-cell activation by cyclic AMP (cAMP),144 and thus may

directly influence the T-cell response. Asthma exacerba-

tions are strongly associated with respiratory viral

infections and asthmatics experience more severe and

longer-lasting symptoms following infection.145,146 Inap-

propriate or poor activation of NK cells in asthma could

enhance susceptibility to these infections. NK cells may

also influence sensitizing antibody [immunoglobulin E

(IgE)] production directly or indirectly.119

Mouse models support an important role for NK cells

in allergic airway inflammation. In a model of allergen

sensitization followed by airway challenge, depletion of

NK cells inhibited the development of allergic pulmonary

inflammation, dramatically decreasing eosinophil num-

bers in the lung and serum IgE.147 In this model, NK cell

depletion during sensitization was necessary to reduce

allergic inflammation, suggesting that NK cells were

required for initiation of the Th2 response, as has been

demonstrated for some Th1 responses.22,23,148 Prior infec-

tion with bacteria can activate NK cells such that they

inhibit allergic sensitization and subsequent respiratory

inflammation,149 and activation of NK cells with IL-12

during sensitization inhibited eosinophilia in a respiratory

virus model of airway inflammation.150 NK cells can also

influence ongoing allergic inflammation. In peritoneal

inflammation, NK cell depletion during allergen challenge

could reduce eosinophilia and IL-5 production,151 and

IFN-c-secreting NK cells induced in vivo by IL-2 and IL-

18 significantly suppressed airway hyper-responsiveness

and eosinophilia after allergen sensitization.152

Taken together, these studies suggest that NK cell func-

tion is altered in asthma, towards a Th2-cytokine-produc-

ing phenotype. NK cells can promote allergic airway

inflammation during sensitization and ongoing inflamma-

tion, but stimulation of NK cells towards an IFN-c-secret-

ing phenotype can reduce allergic airway pathology, at

least in animal models. Our knowledge of the signals that

stimulate different phenotypes of NK cell cytokine secre-

tion in asthma and allergic responses is still very limited.

Are NK cells already polarized and influencing dendritic

cell and T-cell activation during sensitization? If so, what

causes early differentiation of NK cells? How NK cells

promote ongoing allergic sensitization and the relative

importance of direct cytokine production, or interactions

with T cells and accessory cells, are also areas that deserve

further study.

NK cells in fibrotic lung disease

Pulmonary fibrosis occurs as a result of chronic lung

inflammation, in diseases including asthma, chronic

obstructive pulmonary disease (COPD), cystic fibrosis

(CF) and idiopathic pulmonary fibrosis (IPF).153 Persis-

tent inflammation results in dysregulation of the normal

wound healing responses, and generation of pro-fibrotic

cytokines (IL-13 and TGF-b) and growth factors, leading

to accumulation of extracellular matrix components, with

resulting impairment of airway function. COPD is a

chronic inflammation of the lung, the primary risk factor

for which is cigarette smoking, which affects 210 million

people world-wide.110,154 COPD is associated with

destruction of the lung parenchyma (resulting in emphy-

sema), and inflammation and obstructive fibrosis of the

bronchioles. The immunological mechanisms underlying

COPD are still poorly understood.154 Idiopathic pulmo-

nary fibrosis is the name given to fibrotic lung disease of

unknown origin, which is generally fatal within 2–5 years

and which is considered a Th2 disease.

NK cell function is impaired in COPD, which can be

partially attributed to the effects of smoking, which reduces

NK cell function in the lungs and peripheral blood,155–158

possibly by increasing the numbers of immunosuppressive

alveolar macrophages.39 However, peripheral blood NK cell

cytotoxicity is reduced even in ex-smokers with COPD,

compared with control ex-smokers, suggesting a deficiency

associated with disease.159,160 In patients with IPF, expres-

sion of NKG2D was reduced on NK, NKT and cd cells in

BAL, which may be a consequence of the increased expres-

sion of soluble MICA or TGF-b in these patients.161–163

Patients with IPF also strongly express MICA on epithelial

cells and fibroblasts in the lung and have a significant

increase in the frequency of the MICA*001 allele and a

decrease in the frequency of MICA*004, suggesting that

this NK cell ligand may play a role in regulating disease

progression.163

NK cells may mediate a protective effect against fibro-

sis. In models of bleomycin-induced pulmonary fibrosis,

lack of NK cell recruitment, in the absence of chemokine

(C-X-C motif) receptor 3 (CXCR3), resulted in an

absence of IFN-c in the lung and enhanced fibrosis, and
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exogenous IFN-c treatment had a therapeutic effect,

demonstrating the importance of NK cell IFN-c in regu-

lating pulmonary fibrosis.164,165 However, although initial

studies suggested that IFN-c could be used therapeutically

in patients with idiopathic pulmonary fibrosis,166 a recent

large multicentred trial did not find any clinical benefit of

this treatment.167

By what mechanisms, other than IFN-c production,

could NK cells protect against pulmonary fibrosis? In

hepatic fibrosis, NK cells promote disease resolution by

selective recognition and killing of collagen-secreting

stellate cells.168–171 As the balance of fibroblast prolifera-

tion and apoptosis underlies the extent of pulmonary

fibrosis,153 it would be interesting to know if NK cells can

also regulate numbers of collagen-secreting cells in the

lung. Importantly, the ability of NK cells to protect against

infection may also limit airway inflammation and conse-

quently fibrosis. Respiratory infections are more prevalent

in COPD and most exacerbations of COPD and asthma

are caused by infections.146,172 In CF, chronic infections

lead to lung fibrosis, and NK cells, activated via NKG2D,

secrete IFN-c which mediates clearance of the principal

opportunistic infection in CF, Pseudomonas aeruginosa.173

Taken together, these studies suggest a model in which

NK cells shift the balance of lung inflammation away from

a pro-fibrotic response, perhaps via cytokine production

and protection against infection, and these functions of

NK cells are impaired in smokers and patients with fibro-

tic lung disease.165,166,174 Thus, enhancement of NK cell

function may offer novel therapeutic approaches to these

debilitating and often fatal diseases.

Finally, although NK cell activation may be beneficial

in reducing lung fibrosis, NK cells may contribute to loss

of lung parenchymal cells in COPD. MICA is expressed

on the airway epithelium of COPD patients, and expres-

sion of the murine NKG2D ligand Rae-1 on lung epithe-

lium leads to emphysema-like pulmonary dysfunction in

mice, which is blocked by treatment with anti-NKG2D or

NK cell depletion.175

Conclusions and future questions

NK cells may tip the balance between health and pathol-

ogy in the lung, and thus understanding their actions

may identify novel targets for immunomodulation in

respiratory disease. NK cells are activated by multiple

mechanisms in the lung and protect against viral, bacte-

rial and fungal infection, through direct antiviral actions

and activation of macrophages, dendritic cells and the

adaptive immune response. NK cells are also activated in

chronic inflammatory diseases of the lung. Although their

role in these diseases is not fully understood, their ability

to produce ‘Th2’ cytokines may promote lung inflamma-

tion, whereas their production of IFN-c, and other

actions, may reduce lung fibrosis. The activation status of

NK cells may have dual implications for chronic inflam-

matory diseases, such as asthma and COPD, which are

exacerbated by respiratory infection.

Many important gaps remain in our understanding of

the NK cell response in the lung. NK cells can be deficient

or altered in phenotype in respiratory diseases, but

whether this is a reflection of the ongoing pathological

process or a cause of increased susceptibility to disease is

often unclear. Although many potential interactions of NK

cells with dendritic cells, macrophages and T cells have

been demonstrated in vitro, their location, timing and

importance during different phases of an ongoing respira-

tory infection or inflammatory response are still largely

unknown, as is the role of different NK subsets. The lung

has unique properties which regulate immune responses

and, as NK cells specialize their function in peripheral tis-

sues, it will be interesting to discover whether NK cells

also specialize their phenotype to the pulmonary environ-

ment in homeostasis and disease. It will also be important

to know whether ‘memory’ or long-term changes in NK

cell responses can result from or determine respiratory

health. Finally, how the NK cell response is down-regu-

lated after a pathogen has been cleared or to prevent

pathology during inflammation, is another area that could

provide insights into the mechanisms underlying impor-

tant respiratory diseases.
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